Week 13 - Wednesday

COMP 2400

= What did we talk about last time?

= OOPinC++
= Dividing code into headers and implementation files
= Operator overloading

Questions?

Project 6

C makes it easy to shoot yourself in the foot. C++
makes it harder, but when you do, it blows away
your whole leg.

Bjarne Stroustrup
Creator of C++

C++ Operator Overloading

Dividing up code header

class Complex

{

double real;
double imaginary;

public:
Complex (double realValue =
imaginaryValue = 0);

~Complex (void) ;

double getReal() ;
double getImaginary() ;

};

O, double

Dividing up code implementation

Complex: :Complex (double realValue, double imaginaryValue)

{

real = realValue;
imaginary = imaginaryValue;

}

Complex: : ~Complex (void)

{}

double Complex: :getReal ()
{ return real; }

double Complex: :getImaginary ()
{ return imaginary; }

(Partial) overloading operators header

Complex& operator=(const Complex& complex) ;
Complex operator+(const Complex& complex) const;
Complex operator-(const Complex& complex) const;
Complex operator-() const;

Complex operator*(const Complex& complex) const;

(Partial) overloading operators implementation

Complex& Complex: :operator=
(const Complex& complex)

{

real = complex.real;
imaginary = complex.imaginary;

return *this;

}

= In Java, every object has a toString () method

= Whenever you create a Java class, it's a good idea to override the
default toString () so that it gives meaningful output

= In C++, the standard approach for output is to overload the <<
operator for ostream objects and your class

= Unfortunately, it's not a method in your class ... because it would
actually have to be in the ostream class because the first object

object
(argument)

is the one the operatoris "called" on

ostream
(calling object)

= Forsituations like this one, C++ lets a class declare a friend
method

= A friend method is a method that's not actually inside the
class, but itis allowed to access private and protected
member variables

= For example, the Complex class would contain the following
method declaration for output:

friend ostreamé& operator<<(ostreamé& out, const Complexé& complex) ;

= Let's finish the Complex type
= Then, we can do operations on some Complex objects and
output the result

const, of course, means constant in C++

In class methods, you'll see several different usages

Const methods make a guarantee that they will not change the
members of the object they are called on

= int countCabbages () const;
Methods can take const arguments

= void insert (const Coin money) ;
Methods can take const reference arguments

= void photograph (const Castle& fortress);
Why take a const reference when references are used to change
arguments?

Templates

= Allow classes and functions to be written with a generic type
or value parameter, then instantiated later

= Each necessary instantiation is generated at compile time

= Appears to function like generics in Java, but works very
differently under the covers

= Most of the time you will use templates, not create them

Template method example

template<class T> void exchange (T& a, T& b)
{
T temp = a;
b;
temp;

o o

= You can make a class using templates
= The most common use for these is for container classes

= e.g. you want a 1ist class that can be a list of anything

= The STL is filled with such templates

= Unfortunately, template classes must be implemented
entirely in the header file

= C++ allows template classes to be separate from their headers, but
most compilers don't fully support this feature

Template class example

template<class T> class Pair {

private:
T x;
T vy’
public:
Pair (const T& a, const T& b) {
X = a;
y = b;

}
T getX() const { return x; }

T getY() const { return y; }

void swap () {

T temp = x;
X =y
y = temp;

= Let's write an ArrayList class with templates!
= Methods:

" void add (T element)
= T get(int index)

= T remove (1nt index)

STL

Standard Template Library

= Jist

" map
* multimap
= set
" multiset
= stack
" queue
= deque
" priority queue
= vector

Generalization of pointers
No iterators for:

= stack

" queue

"= priority queue

Reqular iterator operations:

= Postfix and prefix increment and decrement
= Assignment

= ==and !=

= Dereference

deque and vector iterators also have <, <=, >, >=, +, —, +=, and -
and these containers also support [] access

/

STL example part 1

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main ()

{
int count;
vector<string> words;
vector<string>::iterator index;
string word;

STL example part 2

cout << "How many words will you enter? ";
cin >> count;

for(int 1 = 0; 1 < count; i++)

{
cin >> word;
words.push back(word) ;

}

for (index = words.begin(); index '= words.end(); index++)
cout << *index << endl;

return 0;

= Shuffle
= Find

= Sort

= Count

= Always use the ones provided by the container, if available
= Functors provided in<functional>

Ticket Out the Door

Upcoming

= Review up to Exam1

= Keep working on Project 6

= Due next Friday

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	C++ Operator Overloading
	Dividing up code header
	Dividing up code implementation
	(Partial) overloading operators header
	(Partial) overloading operators implementation
	Overloading << for output
	C++ approach
	Programming practice
	What's all that const?
	Templates
	Templates
	Template method example
	Template classes
	Template class example
	Programming practice
	STL
	Containers
	Iterators
	STL example part 1
	STL example part 2
	Algorithms
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

