
Week 13 - Wednesday

 What did we talk about last time?
 OOP in C++
 Dividing code into headers and implementation files
 Operator overloading

C makes it easy to shoot yourself in the foot. C++
makes it harder, but when you do, it blows away
your whole leg.

Bjarne Stroustrup
Creator of C++

class Complex
{
double real;
double imaginary;

public:
Complex(double realValue = 0, double
imaginaryValue = 0);
~Complex(void);

double getReal();
double getImaginary();

};

Complex::Complex(double realValue, double imaginaryValue)
{
real = realValue;
imaginary = imaginaryValue;

}

Complex::~Complex(void)
{}

double Complex::getReal()
{ return real; }

double Complex::getImaginary()
{ return imaginary; }

Complex& operator=(const Complex& complex);

Complex operator+(const Complex& complex) const;

Complex operator-(const Complex& complex) const;

Complex operator-() const;

Complex operator*(const Complex& complex) const;

Complex& Complex::operator=
(const Complex& complex)
{
real = complex.real;
imaginary = complex.imaginary;

return *this;
}

 In Java, every object has a toString()method
 Whenever you create a Java class, it's a good idea to override the

default toString() so that it gives meaningful output
 In C++, the standard approach for output is to overload the <<

operator for ostream objects and your class
 Unfortunately, it's not a method in your class … because it would

actually have to be in the ostream class because the first object
is the one the operator is "called" on

ostream
(calling object)

<<
(operator/method)

object
(argument)

 For situations like this one, C++ lets a class declare a friend
method

 A friend method is a method that's not actually inside the
class, but it is allowed to access private and protected
member variables

 For example, the Complex class would contain the following
method declaration for output:

friend ostream& operator<<(ostream& out, const Complex& complex);

 Let's finish the Complex type
 Then, we can do operations on some Complex objects and

output the result

 const, of course, means constant in C++
 In class methods, you'll see several different usages
 Const methods make a guarantee that they will not change the

members of the object they are called on
 int countCabbages() const;

 Methods can take const arguments
 void insert(const Coin money);

 Methods can take const reference arguments
 void photograph(const Castle& fortress);

 Why take a const reference when references are used to change
arguments?

 Allow classes and functions to be written with a generic type
or value parameter, then instantiated later

 Each necessary instantiation is generated at compile time
 Appears to function like generics in Java, but works very

differently under the covers
 Most of the time you will use templates, not create them

template<class T> void exchange(T& a, T& b)
{
T temp = a;
a = b;
b = temp;

}

 You can make a class using templates
 The most common use for these is for container classes
 e.g. you want a list class that can be a list of anything

 The STL is filled with such templates
 Unfortunately, template classes must be implemented

entirely in the header file
 C++ allows template classes to be separate from their headers, but

most compilers don't fully support this feature

template<class T> class Pair {
private:

T x;
T y;

public:
Pair(const T& a, const T& b) {

x = a;
y = b;

}

T getX() const { return x; }

T getY() const { return y; }

void swap() {
T temp = x;
x = y;
y = temp;

}
};

 Let's write an ArrayList class with templates!
 Methods:
 void add(T element)
 T get(int index)
 T remove(int index)

Standard Template Library

 list
 map
 multimap

 set
 multiset

 stack
 queue
 deque

 priority_queue
 vector

 Generalization of pointers
 No iterators for:
 stack
 queue
 priority_queue

 Regular iterator operations:
 Postfix and prefix increment and decrement
 Assignment
 == and !=
 Dereference

 deque and vector iterators also have <, <=, >, >=, +, -, +=, and -=,
and these containers also support[] access

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main()
{

int count;
vector<string> words;
vector<string>::iterator index;
string word;

cout << "How many words will you enter? ";
cin >> count;

for(int i = 0; i < count; i++)
{

cin >> word;
words.push_back(word);

}
for(index = words.begin(); index != words.end(); index++)

cout << *index << endl;
return 0;

}

 Shuffle
 Find
 Sort
 Count
 Always use the ones provided by the container, if available
 Functors provided in <functional>

 Review up to Exam 1

 Keep working on Project 6
 Due next Friday

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	C++ Operator Overloading
	Dividing up code header
	Dividing up code implementation
	(Partial) overloading operators header
	(Partial) overloading operators implementation
	Overloading << for output
	C++ approach
	Programming practice
	What's all that const?
	Templates
	Templates
	Template method example
	Template classes
	Template class example
	Programming practice
	STL
	Containers
	Iterators
	STL example part 1
	STL example part 2
	Algorithms
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

