
Week 13 - Wednesday

 What did we talk about last time?
 OOP in C++
 Dividing code into headers and implementation files
 Operator overloading

C makes it easy to shoot yourself in the foot. C++
makes it harder, but when you do, it blows away
your whole leg.

Bjarne Stroustrup
Creator of C++

class Complex
{
double real;
double imaginary;

public:
Complex(double realValue = 0, double
imaginaryValue = 0);
~Complex(void);

double getReal();
double getImaginary();

};

Complex::Complex(double realValue, double imaginaryValue)
{
real = realValue;
imaginary = imaginaryValue;

}

Complex::~Complex(void)
{}

double Complex::getReal()
{ return real; }

double Complex::getImaginary()
{ return imaginary; }

Complex& operator=(const Complex& complex);

Complex operator+(const Complex& complex) const;

Complex operator-(const Complex& complex) const;

Complex operator-() const;

Complex operator*(const Complex& complex) const;

Complex& Complex::operator=
(const Complex& complex)
{
real = complex.real;
imaginary = complex.imaginary;

return *this;
}

 In Java, every object has a toString()method
 Whenever you create a Java class, it's a good idea to override the

default toString() so that it gives meaningful output
 In C++, the standard approach for output is to overload the <<

operator for ostream objects and your class
 Unfortunately, it's not a method in your class … because it would

actually have to be in the ostream class because the first object
is the one the operator is "called" on

ostream
(calling object)

<<
(operator/method)

object
(argument)

 For situations like this one, C++ lets a class declare a friend
method

 A friend method is a method that's not actually inside the
class, but it is allowed to access private and protected
member variables

 For example, the Complex class would contain the following
method declaration for output:

friend ostream& operator<<(ostream& out, const Complex& complex);

 Let's finish the Complex type
 Then, we can do operations on some Complex objects and

output the result

 const, of course, means constant in C++
 In class methods, you'll see several different usages
 Const methods make a guarantee that they will not change the

members of the object they are called on
 int countCabbages() const;

 Methods can take const arguments
 void insert(const Coin money);

 Methods can take const reference arguments
 void photograph(const Castle& fortress);

 Why take a const reference when references are used to change
arguments?

 Allow classes and functions to be written with a generic type
or value parameter, then instantiated later

 Each necessary instantiation is generated at compile time
 Appears to function like generics in Java, but works very

differently under the covers
 Most of the time you will use templates, not create them

template<class T> void exchange(T& a, T& b)
{
T temp = a;
a = b;
b = temp;

}

 You can make a class using templates
 The most common use for these is for container classes
 e.g. you want a list class that can be a list of anything

 The STL is filled with such templates
 Unfortunately, template classes must be implemented

entirely in the header file
 C++ allows template classes to be separate from their headers, but

most compilers don't fully support this feature

template<class T> class Pair {
private:

T x;
T y;

public:
Pair(const T& a, const T& b) {

x = a;
y = b;

}

T getX() const { return x; }

T getY() const { return y; }

void swap() {
T temp = x;
x = y;
y = temp;

}
};

 Let's write an ArrayList class with templates!
 Methods:
 void add(T element)
 T get(int index)
 T remove(int index)

Standard Template Library

 list
 map
 multimap

 set
 multiset

 stack
 queue
 deque

 priority_queue
 vector

 Generalization of pointers
 No iterators for:
 stack
 queue
 priority_queue

 Regular iterator operations:
 Postfix and prefix increment and decrement
 Assignment
 == and !=
 Dereference

 deque and vector iterators also have <, <=, >, >=, +, -, +=, and -=,
and these containers also support[] access

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main()
{

int count;
vector<string> words;
vector<string>::iterator index;
string word;

cout << "How many words will you enter? ";
cin >> count;

for(int i = 0; i < count; i++)
{

cin >> word;
words.push_back(word);

}
for(index = words.begin(); index != words.end(); index++)

cout << *index << endl;
return 0;

}

 Shuffle
 Find
 Sort
 Count
 Always use the ones provided by the container, if available
 Functors provided in <functional>

 Review up to Exam 1

 Keep working on Project 6
 Due next Friday

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	C++ Operator Overloading
	Dividing up code header
	Dividing up code implementation
	(Partial) overloading operators header
	(Partial) overloading operators implementation
	Overloading << for output
	C++ approach
	Programming practice
	What's all that const?
	Templates
	Templates
	Template method example
	Template classes
	Template class example
	Programming practice
	STL
	Containers
	Iterators
	STL example part 1
	STL example part 2
	Algorithms
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

